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Some general properties of reversible systems are studied: the nature of the stability of the trivial 

equilibrium position, the conditions for the existence of certain periodic solutions and symmetry of the 

phase portrait. It is shown that a discrete automorphism (symmetry) group generates integral manifolds. A 

detailed investigation of the stability of the trivial solution at 1: 1 resonance is presented. The necessary and 

sufficient conditions for the stability of a model system are obtained and it is shown that instability of the 

system implies instability of the complete system. 

1. SOME PROPERTIES OF REVERSIBLE SYSTEMS 

CONSIDER an autonomous system of differential equations 

dx,/dt =fs(xl,. . . ,x,) (S’ 1,2,. . . ,n) (1.1) 

with smooth right-hand sides, whose phase flow is reversible [l, p 1151: there exists a non- 
degenerate linear mapping 

M: x+x, t+-t (1.2) 

such that 

f(x)= -M-‘f(Mx) (1.3) 

f=(f,,...,fn), x=(x1 ,..., X,)EX 

tPrik1. Mat. Mekh. Vol. 56, No. 4, pp. 570-579, 1992. 
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where X is the phase space. The mapping (1.2), (1.3) . 1s a linear automorphism of system (1.1) [2]. 
Obviously, Mp : X-+X, t+ (- l)“t, where p is any integer, is also an automorphism of Eqs (1.1). The 
set o of all such mappings is the cyclic group of symmetries generated by the operator (1.2), (1.3). 
The group w is of order K if and only if M” = E; otherwise it will be infinite. 

The exponent K may take only even values. 
Indeed, let A be the matrix of the linear part. Then MA = -AM. It is known [3] that this equation has a 

non-trivial solution A if and only if M and -M have eigenvalues in common. For a K-periodic matrix M 
(M” = E) this is possible only provided that K = 2k, kE Z. 

Let x = x (t, xa) be an integral curve of Eqs (1 . l)-( 1.3). Then the family 

yp(t,xg)= M-Px((--)p f,x,); p=O,l,...,r(-1 (1.4) 

consists of integral curves of the system. Since Eqs (1.1) have a unique solution, the equality 
MpPx(O, xg) = x(0, M-“%) implies yP(t, x0) = x(t, MePxO). We have thus proved the following 
lemma. 

Lemma. The linear automorphism (1.2)) (1.3) generates a free cyclic group of automorphisms, or 
a cyclic group of finite but even order K (in the case M” = E). If x = x(txo) is an integral curve of 
system (l.l)-(1.3), then any curve of the family (1.4) is also an integral curve, and moreover 

Y& x0) = x(t, M-“x01. 

We will now show that if the phase flow is reversible, the trivial equilibrium position cannot be 
asymptotically stable. 

Theorem I. The solution x = 0 of a reversible system (1 . l)-( 1.3) cannot be asymptotically stable. 

Proof. Let us suppose that the trivial solution is asymptotically stable. Then there exists an 
integral curve x(t, xg) that has the property x(t, ~0) -+O as &++a. Obviously, yl(t,xo)-+O as 
t+ - CQ , contrary to the assumption of asymptotic stability. 

Note that if xc E LF’, where Lp) is the fixed set of the operator M-P, then yP(t, x0) = x(t, xc,). 
Clearly, for any p E Z, 

L(l) = L(uLthk)), 
P h;=l, kEZ (1.5) 

k 

where L\@ is the eigensubspace of the operator M-’ belonging to the eigenvalue hk and L denotes 
linear span. If all the eigenvalues of the matrix M -’ have the values KV? (the case M-“= E, K 

even), then hk = cos(2k7d~) + isin(2kn/fc), where 1 -p < SK- 1, O<~<K- 1, pk=(mOdK). In the 
case of a free group (K = m), the representation (1.5) remains valid, since the Jordan form of the 
matrix MeP duplicates that of M-l apart from the substitution hk+ A{. 

Let us assume that p is even. Then MePx(t) = x(t), and therefore Lp (l) is an integral manifold of 
system (1.1). But if p = 2r+ 1, then M -Px(--t) = x(t). Hence it follows that if Lg’ is an integral 
manifold, all its points are equilibrium positions, since any pair of solutions x(t), x(t + const) that 
belongs to Lp) consists of even functions of time. 

Suppose that LF) is not an integral manifold. Then any trajectory that intersects LF) at two 
distinct points corresponding to successive instants of time hpjp’, hp’ will be called LF)-normal [4]. It 
is clear that an L$i)-normal trajectory is periodic. We have thus proved the following theorem. 

Theorem 2. Let w be a cyclic group of automorphisms of order ~22. Then, if p is even, each of 
the non-trivial sets (1.5) is an integral manifold. If p is odd and Lp (I) is not an integral set, then any 
L$i)-normal trajectory is closed and is periodic with period T = 2 1 tlcP) - fzcp) ( ; if LF’ is an integral 
manifold, all its points are equilibrium positions. 

If K = 2 the integral set L$_‘) is trivial; L&l) = X. That any L$‘)-normal trajectory is periodic is a 
known fact [4]. Conditionally periodic solutions were studied in [5]. 

In mechanical problems K = 2, i.e. M is an involution: M* = E [4, 6,7]. In that case the canonical 
form of M is 
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hi= (Z+m=n) (1.6) 

(Ei is the identity matrix of order j). It follows that M is an orthogonal mapping. 
The following proposition follows from the lemma and the properties of an involutory orthogonal 

mapping M [8]. 

Corollary. If system (1.1) admits of a linear involutory automorphism (1.2)) (1.3)) (1.6)) then its 
phase portrait is symmetrical either about the origin (if 1 = 0) or about the f-plane L\l) (1> 0, m > 0), 
which is an eigensubspace of M. 

Note that if detM = -1 (improper transformation), the symmetry about Lil) is a mirror 
reflection, since it reverses the orientation of the space. 

Example 1. Consider the equations of motion of a holonomic mechanical system with positional forces and 
steady constraints: 

--$(~)-csQ,(qh Qj(O)=O (i=1,2,...,n) 
I a9i 

(1.7) 

2 T= i”/ a&)9;@, 9=(9,....,9n) 

where q is the vector of generalized coordinates, T is the kinetic energy and Qi are the generalized forces. It is 
known [9, lo] that the phase flow of system (1.7) is reversible, since Eqs (1.7) are invariant under the 
substitution q+q, q’-+ -q’, t--t --t. Hence it follows that, first, the phase portrait is symmetrical about the 
coordinate plane q’ = 0 and second, the equilibrium position q = q’ = 0 cannot be asymptotically stable, 
whatever the positional forces acting on the system. 

If the frequency equation 

det II cq+ ti’aii(O) II = 0, Cij = (aQJa9i)O 

has negative or complex solutions 6~’ then, by the Hadamard-Perron Theorem [ll], Eqs (1.7) possess smooth 
integral manifolds W” (stable), W” (unstable) and WC (central) that pass through the origin; moreover, W” is 
the image of WS under reflection in the plane q’ = 0 and vice versa. The set W0 = W”n WU of all solutions 
doubly asymptotic to zero is mapped onto itself. Any trajectory that contains two points with zero velocity is 
periodic and symmetrical about the plane q’ = 0. 

2. 1: 1 RESONANCE. LINEAR NORMALIZATION 

A reversible system (l.l)-(1.3) satisfying the additional condition (1.6) may be written in the 
form 

u; =U(u.,v.), v;=V(u.,v.); u,ER’, v,ERm, I+m=n 

U(u., -v*) = -U(u., v.), V(u*, 4,) = V(u., v*) (2.1) 

Let us assume that U and V are holomorphic functions of u* , v* and that I am. The equations of 
the first approximation are 

u; = A.v., v; = B.u. (2.2) 

(A,, B, are constant matrices). If I>m the matrix D of system (2.2) is singular, since it contains a 
square submatrix of zeros, the sum of whose height and breadth exceeds n [12, p. 1701. The 
multiplicity K of the zero eigenvalue of D is at least 1- m: 

K=dimNDK>dimND=n-rankD=n-rankA, -rankB.>l-m 

(ND is the kernel of D). 
Consider the case K = I - m (then rank A, = rank B, = m). The remaining eigenvalues of D may 
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be grouped in pairs A, -A, since D and -D are similar, so that in a suitable basis D = diag(O, A, -A) 
where A is a non-singular m x m matrix. Hence it follows that system (2.2) may be reduced to the 
form 

E-=0, u’=Av, v’=Au (5‘ER’-m; u,vERm) (2.3) 

since 

diag(A, -A) - 

The non-zero roots of the characteristic equation of system (2.3) are found from the equation 

det(C-X’E)=O, C=A*A=llcijll (2.4) 

and split into pairs +A, (s = 1, 2, . . , m). System (2.1) may be stable only if AZ d 0 (s = 1, 2, . . , 

4. 
Let us assume that all the numbers A,’ are negative and that at least one pair consists of equal 

numbers: A: = As (1: 1 resonance). Assuming that there are no other resonances of order at most 
four, we reduce the linear approximation system (2.3) to canonical form. 

Since in this case rankA = rankC = m, our task is to transform the linear system 

u” = cu (2.5) 

Let r = rankC* = m - 1, where C* = C - A:E. Then the desired linear transformation u, u’+ z, Z 
has the following form (writing only the first group of the whole set of complex-conjugate 
transformations): 

2, = !i plj(Uj+ XlUj)+ ip g P2juj 
j=l j=l 

zs= g psi(u;+&su,) (s=2,3 ,..., m) 
(2.6) 

/=1 

Here j.~ = 1 and the matrix P = llpsjll has purely imaginary elements that satisfy systems of linear 
equations 

(C-A,ZE)Tpr=2illh161Qp: (s=1,2,...,m) (2.7) 

where ps = (psi , . . . , psm), and Sjs is the Kronecker delta. By (2.4), the determinants of these 
systems vanish, so that ifs # 1 Eqs (2.7) have non-trivial solutions. Ifs = 1 the equations also have a 
non-trivial solution pT in the set N2W1, where Ni , N2 are the kernels of the operators C*T, (C*‘)*, 
respectively. Indeed, rank(C*T)2 = m - 2, therefore N2W1 is not empty, and C*T: N2W1-+ Ni . 

The matrix P is non-singular. 
Clearly, the last m - 1 rows of this matrix are independent, since they are eigenvectors of CT that 

belong to pairwise distinct eigenvalues A$, . . . , A$. Suppose that p1 = a2p2 + . . .a, pm, where (Yk 
are real numbers. The first equation of system (2.7) is 

((r,C*= - 2ih, E)pt = -ceT g &,_p: 
k= 3 

The determinant of the left-hand side is not zero, so that the vectors ~2, . . . , pm are dependent, 
which is impossible. 

Applying the transformations (2.6) to system (2.3), we obtain the following complex representa- 
tion: 

E’ = 0, z; = hiz, + iz2, IT; = -X,Zl - iT2 

2; = xszs, q = -x,z, (s = 2,3, . . . ) m) 

The inverse transformation may be found from the equations (summation is from j = 1 to j = m) 
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x(PljAl +iPPZj)Uj= ‘A@* +i*), XP1fUj= ?4(Z* -il) 

~&,U, = ?4 A; 1 (z, + is), xcP,uj= %(z, -F_J (s= 2,3,. . . , m) 

Hence it follows that u and v = A-'u' are linear combinations of the real and imaginary expressions 
z + Z and z - Z, respectively. 

If r = m - 2, system (2.3) becomes 

5’ = 0, z; -i &zs, ii = -?& (s=1,2,...,m) (2.8) 

by application of the transformations (2.6), (2.7), in which we must put p = 0, P~,~_I =pz,,, = 1, 

Plm = p2,m-, = 0. 

3. INSTABILITY. THE CASE OF NON-SIMPLE ELEMENTARY DIVISORS 

Let us investigate the stability of the trivial solution of system (2.1) at 1: 1 resonance. This 
problem was solved for Hamiltonian systems with two degrees of freedom in [13, 141. A major role 
in the solution of the problem is played by the resonance subsystem [15], so we therefore first 
consider the case I = m = 2. We introduce the notation 

PI =2111, Pz =zzF2, x= i(ilz2-zli2), xl 
-- 

=i(z,z,-z,z*) 

Normalizing up to terms of the third order inclusive, we obtain the following system: 

P; =XIcc+(~,,-C12)P,+~12P2 +C1rYl +@@I +/32$5 

P; = -X[Az1P, +@22-C21)P2 +c22r1 +o((P, +P2)5 

x.=R(p,,P2,.Y)+O((pl+p2)5/‘) 

X; =R,(zl,zz,zl,zz)+O((p, +P2)5 

R=2IC(P2-A2,P: +(&,-A 22-C12+C21)P,P2 +B,zPzZl + 

+~~(~11-~2,-C22)P,+(~ *2-B22+C11)Pzl +(C12-C21)_Y2 

y=z,z2 +z,zz, X2 +_Y’ = “&p,p2 

(3.1) 

where RI is a fourth-degree polynomial whose exact form is immaterial, A,, B,, C, are real 
coefficients. We have p = 1 if the elementary divisors are not simple and p = 0 if they are. 

Theorem 3. The trivial solution of system (2.1) at 1: 1 resonance is unstable in Lyapunov’s sense if 
the function R (pl, p2, y) has a fixed sign in a sufficiently small neighbourhood of the origin lying 
entirely within the cone p1 B 0, p2 2 0. 

The truth of this statement for m = I = 2 follows from the fact that x is a Chetayev function for 
system (3.1) if R is sign-definite for p 1 2 0, p2 3 0 (the order of R is bounded above by the degree of 
homogeneity p: + p$). For arbitrary 1 and m the Chetayev function is constructed in the form 

I-m 
V=x2- y’ C .$ - Z zsis 

j=l S=3 

where y is a suitably chosen constant; instability is also derived from the fact that R has a fixed sign, 
Therefore, if p = 1, it follows from the inequalities 

IPl)‘l 
‘/I 

GZJ’p2 ) P2+I~211P:~2(I~211P2)KP, 

that AZ, < 0 is a sufficient condition for instability. 

Corol1ury.t If 1 = m and the matrix C has non-simple elementary divisors, then the equilibrium 
position is unstable in Lyapunov’s sense, provided that AZ1 < 0. 

TKHAZIN L. G., On resonance instability of the equilibrium position in the case of multiple frequencies. Preprint No. 97, 

Inst. Prikl. Mat., Akad. Nauk SSSR, 1975. 
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4. STABILITY IN THE CASE OF NON-SIMPLE ELEMENTARY DIVISORS 

We shall now show that if p = 1 and AZ1 < 0, the trivial solution of the model system obtained 
from (3.1) by dropping all terms 0[ (pi + p2)5’2] and the equation for x1 is stable. 

Let I= m = 2. The model is reversible, with a linear automorphism x-+ -x, y-+y, pl+p,, 
pz-+p2. We will first consider the behaviour of a trajectory along which x vanishes at most once. 
Suppose that at time to the values of pl, p2 satisfy the condition plo+ ho< S2 (6 is some small 
positive number) but at t>to x preserves its sign as long as pl, p2 remain in a cr-neighbourhood 
p1 + p2 c u (a> 8). Note that since the phase portrait is symmetrical, the case t< to reduces to that 

considered here. 
If x # 0, we conclude from the first two equations of the model system that 

dpzld~r =f(~i,~~,_v), I~(P~~P~,Y)I~~(P~ +p2) @=const) 

Therefore, in the domain p1 +p2 ~6, the increments of the variables p1 and p2 satisfy the 
inequality 1 Ap2 1 s k6 1 Ap, 1. On the boundary p1 + p2 = 6 we have 

I APZ I G kS2, p2~p20+IA~21~(l+k)62, p,=6-p2>6-(1+k)62 

Hence it follows that if x < 0 the trajectory does not hit the boundary of the &neighbourhood, 
since p; < 0. If x>O, then the quantities p: and p2 are of the same order on the boundary of the 
neighbourhood (if it is reached), irrespective of the choice of initial data. Since pi > 0, pi < 0, as the 

motion continues we obtain 

~;>[l-(l+k)6]~(1+k)-‘p~. 

At the same time, 

~PZ/~PI =--421~1 +f*(p,,p2, Y), If’l~k’p?’ (k*=const>O) 

Let us assume that p1 increases together with e1 >a--(1+k)S2,uptoE=cre(cz=const>1).Then 

Api = (a - l)~i, Ap: = (cr2 - l)G and Ap2 d -&12i ((r2 - l)G + k*(c~“~ - l)G’2. Consequently, 

p2 <(l +k)cY2 +Ap2 <%[(l +k)-Az1(cz2- l)]~; +k*(aS’2 - 1)~;” 

If a2> 2(1+ k)A;/ + 1, then for sufficiently small l 1 we have p2<0, which is impossible. Thus 
none of the trajectories under consideration can reach the boundary of the l -neighbourhood, if the 
initial conditions belong to a 62-neighbourhood (6 is the minimum root of the equation E/U = 

s-(1+k)#). 
Let us consider trajectories on which x vanishes at least twice. By Theorem 2, these trajectories 

are closed curves. The family of these periodic solutions {n(t) = (x(t), p1 (t), m(t))} does not lead 

to instability. 
Suppose the contrary: for some E>O the family intersects the sphere S, in a sequence of points {r&}. Let 

{T,,~} be a convergent subsequence (the sphere S, is compact), and {tk} the corresponding sequence of times, 
which satisfies the conditions 

\irl- --> q&k> tk) = min II7Ih,k,f)II+O as kern 
--Tk< f<O 

[Tk is the period of n(nOk, t)]. Let 70 = hmk_, qOk. Obviously hm q(no, tk) = 0 as k* to. This means that the 
solution q(qo, t) leads to instability. The function x vanishes along q(qo, t) at most once, for otherwise ~(7)~~ t) 
would be a periodic function of time and so the phase point would reach 17 = 0 in a finite time, which is 
impossible. This result implies a contradiction: on the one hand, as follows from previous arguments, the 
trajectory q(qo, t) cannot leave the e-neighbourhood; on the other hand, it must. This completes the proof of 

stability. 
Combining these results, we obtain the following theorem. 

Theorem 4. Let AZ1 #O, I = m = 2, and assume that C has non-simple elementary divisors. A 
necessary and sufficient condition for the model system to be stable is that A2i > 0. 



Let I = m = 2. The third-approximation model system is 

Reversible systems. Stability at 1: 1 resonance 
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z’=xAz, z=(PI,P,,Y)~, x= +w 
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(5.1) 

@22=C21-A22, a23 =-c22, 031 =B21-A,,-C22, a32=B22 +C,,--A,2 

033 =c2*-c12. 

The cone 

K=lp1,p2,y: 4~~~2 >Y’, ~1 >O,PZ 201 

is an integral set, since by (3.1) the inequality 4pipz>y* holds throughout _ 

(5.2) 

the motion. On the 
hyperboloid conic surface y” = 4pip;! the function x vanishes, changing sign, and therefore the 
boundary of K reflects the phase curves of system (5.1), inducing the phase point to perform 
retrograde motion. The surface y* = 4pip;! is singular, because the solution fails to be unique there. 
Note that the reflection of the phase curves (5.1) is due to reversibility of the phase flow. 

It is clear that the phase point of system (5.1) moves along the phase curves of the linear system 

z; = AZ. (5.3) 

If the point is reflected twice, this corresponds to periodic motion along some part of the phase 
curve (5.3) that belongs to K. 

We will now derive the necessary and sufficient conditions for the existence of singular directions 
(invariant rays): 

P~=~PI, ~=k~p,, k:<4k (5.4) 
where ki , k2 > 0 are constant parameters. To that end, we define 

~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 

G2=C:l(B21-A1,-C22)+2C~~C22(B22-A12+C,1)+B12(B,1C22-C22C21 - 

- C,,Azl)+(B11-C,2 +A22-C21)(BI2Czz+ClzC,l-C1IA22) 

G, = 2C11C22(B21 -A ,I -C22)+C$(Bzz-A12 +C1,)+AzI(BlzCzz+Ct1C12- 

- CIIA~~)+(BII- C~z+A22-C21)(B11C22-C22C21-C11A21) 

G,, =C;2(B21 -A I,-C~,)+A~I(B,IC~~-CZ~CZI-CIIA~~) 

Al = - [k(B, I +A22-C~2-C2~)+k2B~2+A2~l[2&(kCu+C22)1-1 

Suitable computations prove the following theorem. 

Theorem 5. Equations (5.1) admit of particular solutions of the form (5.4) if and only if there 
exists a positive number k such that both of the following conditions hold: 

C3k3 +G2k2 +G,k+G,=O, IA,/<1 (5.5) 

Under the conditions, kl = 2A1 V%. 

In the limiting case, G = 4k((A1 1 = l), th e invariant ray lies on the boundary of K, and it is 
observed to degenerate, disintegrating into an infinite set of equilibrium positions. 

We assert that in the non-degenerate case the system is stable provided that it has no invariant 
rays (5.4). 

Let us consider the structurally stable situation, in which z, = 0 is a hyperbolic singular point of 
Eqs (5.3). The characteristic equation will then have no roots with identical real parts (excluding the 
case of complex-conjugate eigenvalues). There are ten possible relative positions of the eigenvalues 
Al, h2, h3: 
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l)Al<X1<?Q<o; 2)h*<A*<O, ha>0 

3)X, =hz,ReX, <h3 CO; 4)X, =&,&<ReA, <O (5.6) 

5) AI = &, Re h, < 0, h3 > 0 

The other five case are obtained from (5.6) by the substitution Aj+ -Aj. The phase portrait of Eqs 

(5.3) is readily visualized in three dimensions (see for example [6]). 
The fact that system (5.1) has no invariant rays means that neither the real eigenvectors & of A 

nor the reverse vectors -& lie on the cone K. Examining the form of the general solution of Eqs 

(5.3), 

3 
z*(r)= Z Ckehkffk 

k=l 
(5.7) 

we see that K contains no positive (negative) semi-trajectories of Eqs (5.3), since the phase point 
leavesKast++w andastj-co. 

Indeed, in cases (1) and (2) this follows from the asymptotic representation of z*(t): 

z.(r)-Cke 
hkt 

tk as f-C+- (f--w) 

(where & is a suitable eigenvector). In cases (3)-(5) the phase point z* spirals around the straight line that 
contains & and may therefore remain in K for a limited time only. 

Thus if K does not contain invariant rays, the solutions that lie in K are periodic functions of time, 
and therefore the model system (5.1) is stable. The appearance of non-degenerate invariant rays 
leads to instability, which remains true in the full system (Theorem 3). Note that instability of the 
full system also follows from earlier results [ 171 .t 

The results of this discussion may be stated as a separate theorem. Let us say that the trivial 
solution of Eqs (5.3) is structurally stable if one of conditions (5.6) or the conditions obtained from 
them by substituting Aj+ -Aj is valid. 

Theorem 6. Assume that the trivial solution of Eqs (5.1) is structurally stable for system (5.3) and 
that dK does not contain invariant rays. Then the model system (5.1) is stable if and only if 
conditions (5.5) do not hold for any kE (0, +w); if the model system is unstable, the same holds for 
the full system. 

6. EXAMPLE 

Let us consider a mechanical system in a horizontal plane, consisting of two identical rods of mass m and 
length 1, connected to one another and to a stationary base by ideal hinges and spiral springs of stiffness cz and 
c, , respectively. We shall assume that a constant tracking force F is applied at the free end of the second rod, 
directed along its axis; in the natural configuration of the system the rods are undeformed. 

This system may serve as a discrete model of an elastic rod driven by a tracking force. Adequate rod models 
of this type have indeed been used previously to investigate the behaviour of elastic beams, cables and ropes 
[l&20]. 

The motion of the system is described by Eqs (1.7) in which the generalized coordinates are the angular 
deviations of the rods from equilibrium, i.e. ql, (p2, and 

T= ‘/,ml’[49;’ + 31p;9; cW9, - 9,) + 9; z I 
(6.1) 

Q, = -c,v, + cz (vz - v,) - PI sink, - 7, ), Qs = ~1 b, - 91) 

The characteristic equation of the linear approximation system is 

7A’ + -& (2c, + 16c, - 5FI)h’ + 
36 

-cc =o m’,4 I 2 (6.2) 

TSee also: MEDVEDEV S. V., Proof of an instability lemma. Unpublished paper, VINITI, No. 1088-82, 1982. 
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Hence it follows [21, p. 2121 that the system is stable to a first approximation if 

a = 2c, + 16c, - 5Fl> 0, a’ - 28c,c, > 0 (6.3) 

A few rigorous conclusions have been drawn [lo] as to stability in this region. In particular, it has been shown 
that the parameter values satisfying the resonance relation 1: 3 define unstable regimes. On the boundary of the 
region (6.3), that is, when a* = 28~ 1 c 2, the natural frequencies satisfy the resonance relation o1 = wz if a > 0, 
and then 

A = A,,. = tiw, 
w’l = 3 Zc, + 16c, - SF1 

1 J i ml’ 
) w>o 

- -& (2c, - 6c, + FI) & UC, - 2F0 
c* = 

h 
$ (3c, + llc, - 3FI) I 

Clearly, rank C* = 0 only if ci = c2 = 0, F = 0, so the matrix C has non-simple elementary divisors if it is 
non-singular. The matrix P of the linear transformation (2.6) is 

2(5c, - 2N) - + Fl 
i ( 

Zc, 6c, 14 

w W 
+ 3 ml’w)i 

P= 
2(5c, - 2FI)i (Zc,-6c, +Fl)i 

Developing the right-hand sides of the equations of motion in series, we see that there are no terms of the 
second-order of smallness; the third-order terms in the equations for pi, cpz are 

108 
~,=~~‘~,(~~-~,)~+----3_ 49fn, (207~~ - 94FI)(v, -‘pa )’ + f (W,’ + 61p;‘)(v, - ‘~1) 

162 
@I = -~c,&-v#+y lb,, (673~~ - 246N)(v, - vJ’ - ; (24~;’ + %;‘)(vs - 9,) 

Using the substitution inverse to (2.6), we can express the right-hand sides of (6.4) in terms of the new 
variables Zj ,Zj : 

@, =icr,z,z,f, +. .., *a =ia,z,z,‘i, + . . . 

It then follows from the second equation of (2.6), which is 

z1 =~,,(9p;-iw9;)+P2,(9; - iw9;) 

that AZ1 = p21a1 +P~~(Y~. Computations show that the coefficient A2 is defined by 

A II =- 
PII +paz -- 
56wA’ 

[(108p,, - 162p,,)p,,c, - ((207~3 - 94Fl)p,, + 

+ (673~~ -~~~FI)P,,)(P,,+P,,)~+(~~P,,-~P,,)P:,+(~P~,-~P,,,)P:,) - (6.4) 

By Theorem 4, the inequalityA2i >O is a necessary and sufficient condition for stability to the third order. If 
A2i < 0 we have instability in the rigorous non-linear setting. Analysis shows that, depending on the values of 
cl, c2, m, 1, F, the coefficient AZ1 may be either positive or negative. 

A separate discussion must be devoted to the case 5c2-2Fl= 0, which corresponds to the degeneracy 
(detP)2 + (4ci - 7~~)~ = 0. We have cl = 7c, c2 = 4c, Fl = 10~. To determine the matrix P we again use Eqs 
(2.7), to get 

ml= 
i - i 

3oc 
P= 

0 i 1 

Noting that o2 = 12c/(m12), we find from (6.4) that A2i = -2359/(94w)<O, implying that this equilibrium 
position is unstable in Lyapunov’s sense. 
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POISSON STABILITY OF REVERSIBLE SYSTEMS-f 
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An investigation is presented of the stability in Poisson’s sense of reversible systems in which the phase 

volume is not invariant, a particular example of which is non-holonomic systems. Criteria are proposed for 

the stability of such systems in Poisson’s sense, and the existence of integral invariants is discussed. 

1. CONSIDER an autonomous system of differential equations 

dx/dr =X(x) 

t Prikl. Mat. Mekh. Vol. 56, No. 4, pp. 580-586, 1992. 

(1.1) 


